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Abstract

There are significant optical wavefront perturbational effects in the
use of lasers and in imaging through atmospheric turbulence. In adaptive
optics, an active element such as a deformable mirrvor is used to eliminate
the phase aberrations of an optical! wavefront. Diagnostics to defermine the
phase distortions are obtained by various methods. The deformable mirror is
used in a feedback loop in order to cancel the unwanted phase distortions.

This paper considers what is known as a modal approach to the adaptive

tial

o

optics problem in which the wavefront distortions are expanded into a sp
set of polynomials. The coefficients of the polynomials are temporally
varying and represent the time varying phenomenclogical perturbations such
as atmospheric turbulence, thermal blooming, and mirror distortions. The
measurement devices for the wavefront are either a shearing interferometer

or a Hartmann array. The shearing interferometer displaces or shears the
wavefront and then interferes the sheared image with the unsheared image.

The Hartmann array yields a linear measurement of the aberration coefficients
through an effective measurement of the gradient of the wavefron.. Since the
wavefront is temporally varying, state space models for the aberration
coefficients are obtained. An adaptive estimator is developed in order to
adapt upon the atmospheric turbulence structure constant and the bandwidth

of the atmospheric turbulence, and to then obtain a minimum mean square

estimator for the aberration coefficients.

I. Introduction

In order to obtain the maximum irradiance of a laser beam on a distant
object, it is necessary to precisely control the position of the beam on the
object. The pointing control is a precision closed loop feedback systein
which uses feedback measurements relative to where the beam is currentiy
pointing in order to correct for deviations from where it should be pointed.
This is certainly an important element in order to obtain maximum irradiance
over a period of time. However, without further consideration the beam

propagation to the object is in essence an open loop element in such a
system. That is, there is no feedback as to the quality of the beam as it
reaches the object. Thus, the beam is free to propagate according to the




current physical conditions. Since the propagation is affected by certain
physical phenomenon, the beam quality at the object will be reduced
yielding a reduction in the irradiance. These physical perturbational
effects include the initial laser wavefront phase error, aberrations in the
optical train, atmospheric turbulence, and atmospheric thermal blooming.
These perturbational effects cause amplitude losses and phase distortions.
The phase changes across the spatial extent of the beam causes destructive
interference at the range of the object. The irradiance losses due to the
phase distortions can be quite severe. Consequently, it is desirable to
obtain feedback information as to the beam quality at the object such that
the beam wavefront exiting at the aperture can be phase controlled. The
phase control is introduced such that at the object range the beam will
constructively interfere to create maximum irradiance. In this way, the
beam is no Tonger an open loop element in the system but becomes a closed
loop subsystem yielding all the desirable features of closed loop control
such as error correction and insensitivity.

The technology area of phase control of modification of the wavefront
exiting the aperture is known as adaptive optics. Basically, this technoloay
requires a wavefront diagnostic subsystem in order to determine the beam
quality at the object. The beam quality is diagnosed in order to obtain a
measure of the deviation of the wavefront from a desired condition. The
controller subsystem uses the wavefront diaanostics to calculate the required
movement of the controlled element in order to obtain the necessary phase
modifications. The controlled element can be a continuous, deformable
mirror or segmented mirrors that are positioned in order to create the
necessary phase changes in the outgoing wavefront. The objective, again.
is to create the necessary phase changes in order to obtain constructive
interference at the object range for maximum intensity.

The use of the philosophy of adaptive optics is not limited to laser
applications. It can be used to correct imaging system optics. This
correction is to compensate for deviations in the object wavefront due to
perturbational effects such as atmospheric turbulence. Thereby high
quality imaging may be accomplished.

There has been considerable effort in the use of this technology for
both laser and imaging applications. In references [1,2,3] a segmented




mirror dither approach is considered. In particular, the beam is split into
several segments which are indoulated at different freguencies by dither
mirrors. A detector measures the reflected intensity level modulated at

the different dither frequencies. Synchronous detectors were used to

detect and obtain a correction signal to be added to the mirror tilt such
that the field phasors become nearly aligned at the object. This condition
will yield maximum irradiance. Reference [4] considers the use of estima-
tion and control in muitidither adaptive optics. In reference |5] a casse-
grain telescope is autofocused by use of a sinusoidal perturbation type
adaptive control system. The focal plane for the converging beam is adjusted
in order to coincide with the object range. This yields [6], the maximum
beam irradiance on the object. Reference {13] is devoted to the optical
technology of adaptive optics. This issue containS numerous papers on

phase conjugate transmitter systems, image sharpening systems, transmitter
multidither systems, and compensated imaging. Another approach to adaptive
optics is the utilization of Bragg diffraction [14,15,16] in order to obtain
a change in the index of refraction by modulating air with a sound wave.

There has been considerable interest and effort in using a clesed loop
concept in optical systems for astronomical telescopes [7-i2]. In this
application the telescope mirror surfaces are disturbed due to structural
and thermal deformations. A figure sensor is used to obtain the actual,
distorted, mirror figure. This measurement is compared against the desired
figure and control actuators and commanded to position the mirror surface
to minimize the error. In reference [11], a measure of image sharpness 1is
used as a performance index from which a self-optimizing control system is
used to phase control the incoming wavefront to eliminate phase distorticns.
See reference [13] for other papers on image sharpening.

The first step in obtaining maximum irradiance on an object or for
image compensation is that of wavefront diagnostics. This yields a meas:ure
of the wavefront distortion in order to find the correction signal to the
control elements. The control elements can be the adjustment of the focal
length of a Cassegrain telescope by changing the distance between the
primary and secondary mirvors [4,5], the control of a tilt mirror, and/or

the contro! of a deformable mirror.




The measurements of the wavefront distortions are ncisy. In particular,
detector noise, background noise, and photon noise for photon limited appli-
cations 1imit the accuracy of measurement of the distortions. This paper
develops the optimal estimator for estimating the wavefront distortions with
two types of measurement devices, a shearing interferometer and a Hartmann
array. Although these are two physically different optical devices, the
mathematics of the measurements are similar. The estimators are, thus.
similar and it is reasonable to consider both in the same paper.

The distortions are expanded into an orthonormal set of polynomiais
where the coefficients are called aberration coefficients. This corresponds
to the proper optics terminology and the coefficients correspond to well
known optical errors such as focus, astigmatism, coma, etc. The aberration
coefficient temporal properties are modeled as 1inear Markov models. The
bandwidths of the models are directly proportional to the relative wind
speed across the optical aperture. The driving noise variance is directly
proportional to the atmospheric turbulence structure constant, C,” (see
reference [17]).

This paper is the first application of adaptive estimation to adaptive
optics. The adaptive estimator converges readily to the required estimates
of the aberration coefficients in the presence of uncertain atmospheric
turbulence. Thus, the adaptive estimation of aberration coefficients in
adaptive optics is an extremely useful and important technique to enhance
performance of high energy lasers and to enhance performance of imaging
systems. The adaptive optics application represents a state of the art
area in optics. Thus, the paper contributes also to the optical literature.

The paper is broken into six sections. Section Il contains the problem
statement. Section III gives the measurement devices and their equations.
Section IV considers the dynamic models for the aberrations. Section V
contains the formulation of the adaptive estimator, and Section VI contains
the application of the estimator to the shearing interferometer problem.

I1. Problem Statement

In order to correct the wavefront of an optical beam, 1t is necessary
to spatially modify the phase of the beam. There are several ways of
accomplishing a phase change, i.e., phase plates [18], Bragg diffraction,
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focal length and tilt adjustment, and/or deformable mirrors. There is a
need to change the phase in real-time in order to compensate for temporally
as well as spatially changing distortions, and do this with low power
requirements. In high energy laser applications, the most viable methods
are that of focal length ang tilt adjustment with higher order aberration
correction using a defarmagie mirror. The mirrored surfaces must be cooled,
however.

The intensity of a laser beam at the far field is a mapping of the
phase as well as the amplitude [18,19]. A ratio of the ideal intensity
without phase distortions, 1%, to the intensity with phase distortions, I,

is called the Strehl ratio, i.e.,
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It may be shown [18] that the Strehl ratio is always less than one in the
presence of phase distortions. High quality imagery alsc requires that the
phase distortions be zero. The effect is shown symbolically in Figure 1.
In both the problems of imaging and high energy lasers, atmospheric
turbulence acts to phase distort the optics. In addition, base vibrations
cause effective phase distortions, thermal blooming of high energy lasers
are a problem, and even thec resonance in the laser cavity cause distortion
problems. However, if the phase distortions, ¢#(x,y), were known over all
the spatial regime, then a deformable mirror along with focus and tilt
adjustment can be used to eliminate much of the distortion. In order to
accomplish this diagnostic problem, the wavefront distortions, I(x,y) may
be expanded into a set of spatial polynomials defined over the spatial
extent of the aperture. In particular, the polynomials are chosen to be
orthogonal over the aperture. Two sets are common in optics work. The
first set of polynomial expansions is known as Zernike polynomials [18].
The second set is used originally by Fried [171 and later by Hogge [20] in
atmospheric turbulence work. The second expansion can be defined as follows

s(xay) = 2 a:F(x.y) (2)
o e
5
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where the domain of definition for x and y is the circular region of the
aperture. The aj's are the aberration coefficients and Fj are a set of
orthonormal polynomials related to the Zernike polynomial. The first ten
polynomials and their physical significance are given below.

Fl(x,y) = (nl:)d, (uniform phase shift across the aperture)

(tilt across aperture)

Fo(x,y) = (~§7)‘y,
R’
F,(x,y) = (-1? )‘(xf+ y? - %}). (refocus)
R :
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where R is the radius of the aperture. Fried [17] shows that when the wave-
front is distorted by atmospheric turbulence, the lower order aberrations
are the dominant terms. Furthermore, due to the fact that other physical
phenomenon such as thermal blooming and mirror thermal distortions are alsc
adequately represented by the low order aberrations., the wavefront distor-

tions may be adequately assumed to be represented as a finite polynomiail

(e

s(x,y) = :E: aij(x,y). (4)
=

In atmospheric turbulence, the aberration coefficients are not constant
Rather, they are temporally varying with bandwidth reiated to the relative
wind speed across the aperture and with variance that is a function of the
turbulence structure constant, Cnf, which is a measure of the turbulence

strength. Thus, it is more appropriate to write equation (4) as
P
s(x.y.t) = 2, a.(t)F.(x.y). (5)

Given the phase distortions as in eaquation (5), the deformable mirror may be
controlled to have a phase equal and opoosite the phase distortions such
that the total phase is zero. This leads to another reason, less physical
than the dominance of the lower order terms, for the expansion of ¢ into a
finite polynomial. That is, the control of the deformable mirror is 1limited
to the highest spatial frequencies (as well as temporal bandwidth) that may
be controlled due to the finite spacing of control actuators on the mirror.
In atmospheric turbulence, the image of the far field may be used to
determine the phase distortions from which the reciprocity principle may be
used to then cancel the phase via the deformable mirror control. Systems
which use this type of wavefront measurement are known as image compensating
systems [13]. A measurement of the phase distortions from the image may be
obtained by using a shearing interferometer or by a Hartmann array. The
measurements of these devices may be related to the aberration coefficients
plus noise. The dynamic model for the aberrations are uncertain models in
that they depend upon knowledge of the relative wind speed as well as the

turbulence structure constant. Since the measurements are noisy and the

gl




dynamic models contain uncertain parameters, it is necessary to use adaptive
estimation in order to obtain an estimator for the coefficients. An impor-
tant aspect of applications of the estimator is that the convergence times
required are extremely fast. Thus, théﬁadaptive estimation scheme chosen
includes a probability estimator for the uncertain coefficients although the
computational burden is greater than other adaptive estimation schemes, the
convergence times required justify the use of this algorithm. The next
section gives a basic description of the measurement devices as well as

their equations.

ITT. Measurement Devices

There are two major measurement devices used in image compensation
systems. The first is that of a shearing interferometer and the second is
that of a Hartmann array. The measurement of the wavefront using a snhearing
interferometer is depicted in Figure 2 for a one directional shear. The
wavefront is sheared in two orthogonal directions. The interference wave-

front in one direction may be written as

%

V(X,¥55¢,t) = o(x+sx,¥,t) - o{x,y,t) (6)

where ¢ is the phase front under test, Sy 18 the lateral shear direction,
and V is the quantity to be measured.

Detector arrays behind the wavefront interferometer using zero crossing
will measure the wavefront plus noise. Thus (assuming that two detector
arrays are available to measure the vertical and the horizontal shear), the
measurements for the i-th detector in each array is given as

Ry B S an = .. oA Vi o S “ GEXs e

Vi, 3(xeyisyat) 1J(><+SJ“XJ y+s38, 5 t) (fw t) i3 (7)
= e G
R

where Sx4 and 5y are zero when x # j or y # J respectively, and when i
represents the i-th detector in the j-th array (q detectors in each array),
J = x corresponds to a horizontal shear, j = y corresponds to a vertical

shear, and N3 is the detector noise on the i-j-th detector. The noise 14




is assumed to be zero mean, white with covariance ryse It is assumed that
J

the detector noise terms are independent of other detectors. The shearing

distance is chosen equal to the separation of the detectors in the array.

The wavefront measurements may be placed into an array

y = To + ({')
where y is a vector 1
1 f v 7 v } J
IR S ey s V, N e e ’
e S iy 24X q,X L,Y Z2isY ‘Q“YJ

a vector formed from the independent phases in equation (7), and n is

a noise vector, zero mean, white with diagonal covariance

where R is diagonal with elements r... The measurements in equation (7)

will be such that some of the ¢,. and ¢, will correspond to the same spatial
phases. Thus, there will only be a fewer number of phases than 4q phases.
Th matrix T is a matrix of plus and minus ones and zeros. A typical

example is shown in Figure 3 in which the shear measurements may be written

3

in terms of the phase values at the i-th spatial position. The 12 measure-

ments in vector form are
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The wavefront distortions may be expanded into the pciynomials as in equa-
tion (5); i.e.,
n

g 058 = AAEEIE (s ) (10)
gl

where (Xi‘yi) corresponds to the i-th spatial point. Thus, a vector equa-
tion may be written for the phases in terms of the aberration coefficiants,

g [ e
Fo. | [F xay ) B (% o8,) Fxoy )] [a 0]
g Rpa¥y be Folqudy by wans SalRyady 1\
: Fylx, ¥, )s Fl(x.,y”). SR Fn(xt,yA) a,(t)
b, | = [F (Xga¥3)s FylXgsd )s ons Folraay ) | a,(t) (1)
. \ {
) LFz(Xm’ym)’ Fo(xpo¥p)s - o Fn(xm.ym{_ _am\tl

or equation (11) may be written in vector form as
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¢ = Fa(t). (12)

Equation (12) may be used with equation (8) to obtain a measurement equa-
tion in terms of the aberration coefficients, i.e.,

WV (TF)a+n

"

H atn

SI |
where the definition of HSI is obvious and the subscript, SI, denotes the
measurements using a shearing interferometer. This is the desired measure-
ment equation for the shearing interferometer.

The measurement of the wavefront using a Hartmann array is depicted 1n
Figure 4. Basically, the image is formed on the Hartmann array by a lens
system. Since the distance to the object is long, a wavefront impinging on
the array would be approximately planar without turbulence effects. How-
ever, turbulence distorts the phase of the wavefront as in Figure |. Thus,
the image across the Hartmann array is phase distorted in the presence of
atmospheric turbulence. The Hartmann array consists of several hundred
pinholes (or fly eye lenses) that deflect the light back to gquad detectors

located behind each hole (or lens). The quad detectors will yield measure~

ments proportional to the gradient of the wavefront in both x and y direc-
tions, i.e., for each pinhole two measurements are obtained, i.e.,

Oyl e b
"x]- S + ‘Xi' V=2 5 i ot (14)
and
3d.
A % I pa T= 12 s =G (15)

Ve = Ay Wy

where q is the number of pinhole-detector pairs. The gradient of the wave-
front in terms of the aberration coefficients may be obtained by differen-

tiating equation (5), i.e.,

n
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and
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Equations (14) and (15) may be put into vector form as

or in vector form

y = HHA atn
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where y is the measurement vector in equation (18), Hua is the measurement
matrix of partials, and n is the vector of measurement noises. The measure-

ment noise is assumed zero-mean, white with covariance

Ela(t)n()T] = R(E)a(t=1)

where R is in block diagonal form since the measurement noise ny  is
1
llg25veesQe  THIS particular aspect

correlated in general with Ny.s Vi =
i

12




complicates the estimator somewhat as each pair of measurements for one
detector must be processed through the estimator rather than sequentially
processing each measurement. However, the form of the estimator is still
simplified over the form required if R was not block diagonal.

This section then contains the development of the measurement equa-
tions for both the shearing interferometer and the Hartmann array image
compensation systems. The equations are in the form of linear transforma-
tions of the aberration coefficients. This allows for the development of
the instimation equations for both systems. The next section considers
approximations for the state space models of the aberration coefficients.

IV. Dynamic Modeling of the Aberration Coefficients

In order to develop an estimator structuf?ffor the estimation of the
aberration coefficients, it is necessary to obtain models for the teuporal
variation of the coefficients. The models must be such that they adequately
represent the actual statistics of variation, and yet be simple encugh for
implementation into the filter. Furthermore, the wmodels will be shown to
be functions of the atmospheric turbulence bandwidth as well as the atmos-
pheric turbulence structure constant, C”5 (see references [24, 25] for a
precise definition). These models are approximations similar to that of
reference [26] for the intensity fluctuations of a laser beam and similar
to reference [27] for the temporal phase distortions. However, since the
estimator is adaptive, it will adapt upon the best model structure for the
particular realization of atmospheric turbulence. Alsc, the time interval
for use of a high power laser as well as imaging through atmospheric turbu-
lence is short. Thus, the models are adequate for this problem and will
vield an estimator structure that can be implemented real time.

In Fried's paper [17] on wavefront distortion, it is shown that the

mean square value of the linear tilt coefficients is given as
E(a,?) = 0.6940°(0/r,)*/° (20)

where a - is equal to (a,”+a ”), the mean square value of the spherical

coefficients is given as

E(ag’) = 0.0165707(0/r,)>"? | (21)
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where a ¢ is equal to ag, and the mean square value of the quadratic coeffi-
cients is given as

E(ag?) = 0.05270"(D/r0)5/3 (22)

where aQ* is equal to (a,? +a(7-+a(7). The diameter of the aperture is
denoted as D, and the quantity P is a length parameter defined as
\3/,5

S (6.88/a) (23)

where

d= 2 9](2w/x)i/r C, “(s)a(s)ds (24)
path

where )\ is the wavelength and where Q(D) is a weighting factor depending on
the nature of the optical source. In the case of an infinite plane wave

source with a constant structure constant, the parameter B is given as

13/5
gz r—mm—QLgam—v— meters (25)
| 2.91 k’chf

where k = 2n/) is the wavenumber, R is the range in meters, and an is the
turbulence structure constant which is a measure of turbulence strength.
References [20, 28] discuss the temporal variation of the atmospheric turbu-
lence. It is shown that the corner frequency of the turbulence for each
aberration is of the order of the relative wind speed divided by the diameter
of the aperture. In reference [28] approximations to the power spectral
densities are given. It is assumed that adequate approximations to these
models for each aberration are of the form

a; = -84, 3 »2&1 T5U5s (26)
1:2,3’ 5Ny
where the B is given as
s g X
8, = ki 5 (27)
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with ki given in Table I, where V is the relative wind velocity, and where

a; is zero mean white noise with unity variance. The variance o may be
calculated by use of Fried's paper. Thus, the terms are
E(a,
_/(Lj o
Sl 5 i=2,3,
(28)

Q
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and

It is assumed in such a set of models that the aberrations are uncorrelated.
They are not in the expansion functions as given in [20]. However,
uncorrelated expansion functions may be found. Also, additional uncertain
model parameters may be used to ascertain this correlation. These parameters
may be augmented to the adaontive estimator.

The first coefficient which appears as a constant phase shift doesn't
affect the far field intensity. It may be noted that the variances, L
are functions of the turbulence structure constant. Since the turbulence
strength is not known a priori for a ptach of turbulence, the structure
constant, Cnf, is uncertain. Furthermore, since the relative wind speed is
not known precisely for an aircraft scenario, Y may be uncertain. Thus,
the estimator must adapt on the uncertain parameters in order to learn them
for use in the estimation processes. Furthermore, structure adaptation may
be used to refine the models for a particular realization if the time inter-
val demands a more accurate model.

The model approximations are reasonable for the logic previously stated.
That is, other work in Tlaser fluctuations have used similar models, the
estimator will adapt upon uncertain parameters, the analytics for turbulence
may not correspond to a given scenario, and a computationally feasible model
is necessary for real-time implementation.

The next section gives the structure of the adaptive estimator.
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V. Adaptive Estimator

This section contains the equations for the adaptive estimator. The
estimator is based upon the original work by Magill {29]| and extended by

Lainiotis [30] and Hawkes and Moore [31]. In particular, as the measure-

ments for the shearing interferometer are in a form whereby the measurement
noise covariance matrix is diagonal and as the measurements for the Hartman
array are in a form whereby the measurement noise covariance matrix 1¢
block diagonal with blocks of 2 x 2, the sequential processing adaptive
estimation form of Hawkes and Moore is especially viabie. 1In this form,
the measurements may be processed in a sequential form {one at a time). This
only requires a scalar inverse for the shearing interferometer measurement
and a 2x2 inverse for the Hartmann array.

The dynamic equation for the aberration, equation (26), may be dis-
cretized as

a; (k1) = exp (-&;T)a; (k) + a,(k)u;(k) (29)

E(aif)
q;(k)=y 55— [1-exp (-2 8;T)]
B

]

where

us is zero mean white noise with unity variance, and T is the sampling

period. The dynamic equations may, thus, be written in the general form

a(k+1) = o(v)a(k) + V(V,an)u(k) (30)
where
¥ 0 o |
exp(-k; D) 0 0

v 0

0 exp(-k, 5) 0 0 (

§(v) = 0 0 exp(-k, 5 0 0

0 0 0 exp{-k_ &) 0

0 0 0 0 exp(-k. §
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and where
[q,(k) 0 0 0 0
0 q3(k) 0 0 0
F(v,Cn?) = 0 0 q“(k) 0 0
0 0 0 qs(k) 0
| 0 0 0 0 a, (k)
where
q1(k) = qi(k,Van:)

from the definition of qi(k). It is assumed that v and Cnf are defined over
a discrete range. The two parameters may be contained in the finite set

|
VElVI,Vz,...,Vqll

|

and
B S TR 18|
with a priori probability density function
9;

P(v) = :E% Pr(vi)d(v-vi)
']:

and

The a priori density function for the pair is given (assuming independence)
as

q, 9,
- _ W SR
p(V;Cn?) = § J—‘; pr(V,l)Pr(Cn;)(S(V vi’cn CnJ) (3])
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-
or by defining “i. £v,C

.
P(o) = }E} P (67)8(0-05 ) (32)
];A

where 5 is defined for each q, xq, pair of v's and Cﬁ s and g = q, Xq

The algorithm for the shearing interferometer measurements will be
written explicitly for complieteness. The Hartmann array algorithm is an
immediate extension of this and will, thus, not be written.

Equation (13) may be partitioned as

h?
n
Heyp = (33)
h.
q
where h; is the i-th row of the matrix. The measurement equation may thus
i
be written as i
Y. R
y hq @ N i
= ‘ (34)
¥ h, & * n,
S g . |

Using the results in [30], the optimal estimator for the aberration

coefficients given the measurements up to and including time k-is

-

q
, ¥ ]
a* (kv = ;g; 2t (k14,0 850P (85]9,). (35)

where a4(k‘uk,wi) is the s.-conditional estimate for a and p"(“ii‘k) is the
probability of “i given the measurements. The covariance of this estimate

is

18




q
P(K) = };}r(kzc«i>+[é(kwk,ei>—a*(kwk)][a*(kwk,ei)-5*<kwk>f{. (36)
1=

The ai-conditional estimates may be found between measurements as

8™ (k#1]y»04) = e(0)a’ (ku,.0.), (37)
Sl o2l
and
PT(ke1l0,) = o6 )P (kle)aT(0) « T(o)T(0,), (38)

where b(wi) and r(@i) are as in equation (30) evaluated with the i-th 6. At
a measurement the wi-conditional estimate may be found by sequentially
processing the measurements through the following algorithm. The first

measurement processing is

N5 PN R : (1), i
a (kj,’k_]\xlv 1) =l (K L!‘k_-I,L‘]-) it Kk (‘.j]-)[:y1 ‘hld (klvk']")'i):],
39
T e e ¢
where
B ) ML Tee w7 -
Ke' '(05) = P (ke )h "[h P (kloodh, " + r )70, (40)
=il s 2q
where v is the covariance of the final measurement noise element and
a(})(klwk_],y,,“i) denotes the estimate given the past measurements and the

measurement on the first row of the measurement vector. The covariance of
this estimate is
(1) ’ & (1) =~
Pk 0g) = [1-K " T(e5)h JP7 (Kley), (41)
1= ]52% v~ «52Q

The required estimate is given by cycling through the iterations
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(1) TR LR \

a “( qu -,y4, s_yc"1) =) (k 'w“k’.y:_3.\’/:> ’y,_ ’ 3
K )( )y, - h att l)(k!w ) 0.) (42)
k i,[y? ]. gqux‘ ,y:, sy Lo 1}]» )

where
(2) (Eoalny oo Breo olR=gli =1
£ T - ‘N b 6 {vip ~ = \
Ke'  h8:) =P (kle)h, " [h,P (kfes) -h  +r ] (43)
where r 1is the covariance of the ¢-th measurement noise element. The
covariance update is given by
(D (kte,) = 1ok, M 6. yn 001 ) (g (4
SRS T 2 FEEW LGt ¥ IS P
{ i/ [ Kk \ ],h\J‘ A‘(, 1)’ \ 4)
1:2,3,. ,?q
The required ¢.-conditional estimate is given by
1
L ..l""|\
L 2B ¥ = aveqlep ) (45)
a (k .kq’i) d \ K e ],' \59)
and its covariance is given as
: 2 -
P*(klo,) = P29 (k]e.). (46)

It may be noted that only a scalar inverse need be taken to find the required

estimate. In order to update the necessary probabilities sequentially, it

T 1)

is necessary to store [th(:)(k!ei)h +r,] and the residuals y, - h,a" "(k{s;),

for 2=1,2,...,2q and i=1,2,...,9. These quantities are available as they
are calculated from the previous equations. The required probabilities are

then calculated as in reference [31], i.e.,

29 ) 1 5 .
A UARICRTRE TN SN U cRAITIN) I SR CH) R CH Y
=1
do- LU T TR i (2) I
;“ﬂ ')k(~)(v\i)!"'eXp:-l';,[\‘k v (4';1,)] [x;k ('Ji)]["’k ! ((71.)]£Pr(6,ild'k_‘)‘

(47)
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for i=1,2,...,q where

2 (L )
\)k( )((‘,.) = yQ-h a( )(klﬁ'k_],ylay2’---sy1_1v‘ji) (48/‘
and

ﬁk(?)(ei) = [htp(g)(klej)hﬁT .1 (49)

The terms ”k(})(:i) and Qk(Z)(Gi) have been stored during the previous calcu-

lations.

VI. Results and Conclusions

The estimator was simulated for various types of Jasers, several different
propagation lengths, and several optical aperture diameters. The three types
of lasers simulated were the aas dynamic laser (GDL) at 10.6 x 107° meter
wavelength, the electric discharge laser (EDL) at 9.28 x 107% meter wave-
length, and a chemical laser using deuterium floride (DF) at 3.69 x 107°
meter wavelength. Both short ranges 1-5 kilometers and medium ranges 20-50
kilometers were used. Several different signal to noise ratios were used.

ATl units yield a phase error in radians. Tne tilt errors are, for
example, in units of radians/meters. Since the resolution of any plots
would be less than minimal because of the significant decrease in several
orders of magnitude of the covariance of estimation error, plots of the
results will not be shown. Instead, both the initial and steady state
covariance of the estimation error for each case will be given for each
aberration order. The steady state solution is a strong function of the
measurement noise and less of a function of the dynamic models. The cases
shown are for an approximate signal to noise ratio of five. The sample rate
for the measurements is 0.0005 seconds. This is considered realistic with a
state of the art computer. Five possible values of an and the bandwidths
were used. The actual C,° for each run was 1 x 10716,  The turbulence band-
widths were chosen with a transonic relative wind speed.

For the casc of a GDL with one meter optics and a range of one kilometer,
the initial standard deviation for the two tilts, refocus, and two astigma-
tisms were 0.7179, 1.56 x 10~!, and 1.338 x 107!, respectively. In several

21




Monte Carlo runs, the correct parameters were learned before 0.02 seconds.
The steady state standard deviation at 0.025 seconds after a measurement were
as follows: x-tilt, 2.43 x 107 3; y-tilt, 2.42 x 1073; refocus, 7.14 x 107%;
quadratic astigmatism, 6.86 x 10”%; and product astigmatism, 7.74 x 107%.

The x-tilt, for example, would/correspond to an uncertainty of 1.52 x 1072
wavelengths. With an initial range of 50 kilometers, the initial standard
deviations for the two tilts, refocus, and two astigmatisms were 5.259, 1.11,
and 0.946, respectively./ Again, the true parameters were learned before 0.02
seconds in several runs. The steady state standard deviations at 0.025
seconds after a measurement were as follows: x-tilt, 4.666 x 1077; y-tilt,
4.47 x 1073; refoels, 2.93 x 10°3; quadratic astigmatism, 3.22 x 1073; and
product astigmat3sm, 2.687 x 1073, It can be seen that the increase in
propagation distance increases the initial and the final uncertainty. The
tilt uncertainties at steady state are about doubled for an increase of range
by 50 times.

For the case of a GDL with 0.6 meter optics and a range of 5 kilometers,
the /initial standard deviations for the two tilts, refocus, and two astigma-
tisms were 1.605, 3.51 x 107!, and 2.99 x 107!, respectively. In several
Monte Carlo runs, the correct parameters were learned before 0.02 seconds.

N

The steady state standard deviations at 0.025 seconds after a measurement
were as follows: x~tilt, 3.46 % 1073y y=tilt, 3.38 % 107 refocus, 1.415 %
1077 quadratic astigmatism., 1.419 x 1077%; and product astigmatism, 1.413 x
Tara,

For the case of an EDL with 0.6 meter optics and a range of 5 kilometers,
the initial standard deviations for the two tilts, refocus, and two astigma-
tisms were 0.7187, 1.57 x 107!, and 1.339 x 10°!, respectively. The correct
parameters were learned before 0.035 seconds. The steady state standard
deviations at 0.050 seconds after a measurement were as follows: x-tilt,
2.43 x 107%; y-tilt, 2.426 x 1073; refocus, 7.15 x 10™"%; quadratic astigma-
tism, 6.87 x 10~"; and product astigmatism, 7.74 x 107",

For the case of a DF laser with 0.6 meter optics and a range of 5 kilo-
meters, the in'tial standard deviations for the two tilts, refocus, and two
astiagmatisms were 4.61, 1.008, and 8.59 x 107!, respectively. The steady
state standard deviations at 0.02 seconds after a measurement were as

Ze
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follows: x-tilt, 4.60 x 10°3; y-tilt, 4.41 x 10”7; refocus, 2.79 x 10
quadratic astigmatism, 3.045 x 107%; and product astigmatism, 2.569 x 1077
With a range of 50 kilometers and 1 metér optics the initial standard devia-
tions are respectively 14.58, 3.19, and 2.72. At steady state, the standard

deviations are as follows: x-tilt, 5.11 x 1073; y-tilt, 4.85 x 077,

refocus, 4.39 x 10”%; quadratic astigmatism, 5.338 x 107%; and product
astigmatism, 3.93 x 107 °%.

It may be seen that, as is well known, the uncertainties for shorifer wave-
lengths through atmospheric turbulence are initially greatly increased.
However, the adaptive estimator is able to decrease this uncertainty. which
is much higher than the uncertainties at larger wavelenaths, to a .atue
nearly the same as the larger wavelength lasers. The estimator is seen G
bring the uncertainty levels down to that required for control while adapting
upon the uncercain atmospheric turbulence strength and bandwidth. Cther runs
were accomplished at lower and higher signal to noise levels which indicate
similar results.

This paper introduces the adaptive optics problem to the control cummunity.
The adaptive estimation structure developed within is a viabie structure for
estimation of aberration coefficients in adaptive optics systems. The
estimator has been well exercised with several Monte Carlo runs for GOL,

EDL, and DF lasers at several ranges and several different optical apertures.
The estimator may be implemented into a minicomputer with either time varying

or constant gains for real time applications.




Table 1
Coefficients for Bandwidth

j 3
2 0,163
3 0.33
4 Tt
5 059
6 0.6
i 0.8
8 1.4
9 153
10 Jisd
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